Mutator Phenotype and DNA Double-Strand Break Repair in BLM Helicase-Deficient Human Cells

نویسندگان

  • Tetsuya Suzuki
  • Manabu Yasui
  • Masamitsu Honma
چکیده

Bloom syndrome (BS), an autosomal recessive disorder of the BLM gene, predisposes sufferers to various cancers. To investigate the mutator phenotype and genetic consequences of DNA double-strand breaks (DSBs) in BS cells, we developed BLM helicase-deficient human cells by disrupting the BLM gene. Cells with a loss of heterozygosity (LOH) due to homologous recombination (HR) or nonhomologous end joining (NHEJ) can be restored with or without site-directed DSB induction. BLM cells exhibited a high frequency of spontaneous interallelic HR with crossover, but noncrossover events with long-tract gene conversions also occurred. Despite the highly interallelic HR events, BLM cells predominantly produced hemizygous LOH by spontaneous deletion. These phenotypes manifested during repair of DSBs. Both NHEJ and HR appropriately repaired DSBs in BLM cells, resulting in hemizygous and homozygous LOHs, respectively. However, the magnitude of the LOH was exacerbated in BLM cells, as evidenced by large deletions and long-tract gene conversions with crossover. BLM helicase suppresses the elongation of branch migration and crossover of double Holliday junctions (HJs) during HR repair, and a deficiency in this enzyme causes collapse, abnormal elongation, and/or preferable resolution to crossover of double HJs, resulting in a large-scale LOH. This mechanism underlies the predisposition for cancer in BS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The BLM helicase is necessary for normal DNA double-strand break repair.

Experiments with the supF20 mutagenesis system demonstrate that extracts from Bloom's syndrome (BS) cells are unable to use microhomology elements within the supF20 gene to restore supF function after the induction of a double-strand break (DSB). Additional experiments with the pUC18 mutagenesis system demonstrate that although the efficiency and fidelity of DSB repair by BS extracts are compar...

متن کامل

Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing.

Bloom syndrome, characterized by a predisposition to cancer, is caused by mutation of the RecQ DNA helicase gene BLM. The precise function of BLM remains unclear. Previous research suggested that Drosophila BLM functions in the repair of DNA double-strand breaks. Most double-strand breaks in flies are repaired by homologous recombination through the synthesis-dependent strand-annealing pathway....

متن کامل

Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair

DNA double-strand breaks (DSBs) are one of the most deleterious types of lesions to the genome. Synthesis-dependent strand annealing (SDSA) is thought to be a major pathway of DSB repair, but direct tests of this model have only been conducted in budding yeast and Drosophila To better understand this pathway, we developed an SDSA assay for use in human cells. Our results support the hypothesis ...

متن کامل

DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells.

The 5'-3' resection of DNA ends is a prerequisite for the repair of DNA double strand breaks by homologous recombination, microhomology-mediated end joining, and single strand annealing. Recent studies in yeast have shown that, following initial DNA end processing by the Mre11-Rad50-Xrs2 complex and Sae2, the extension of resection tracts is mediated either by exonuclease 1 or by combined activ...

متن کامل

Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops

Werner syndrome is an inherited human progeriod syndrome caused by mutations in the gene encoding the Werner Syndrome protein, WRN. It has both 3'-5' DNA helicase and exonuclease activities, and is suggested to have roles in many aspects of DNA metabolism, including DNA repair and telomere maintenance. The DNA-PK complex also functions in both DNA double strand break repair and telomere mainten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2016